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The context

» Neuroscience at microscopic level
» Health theme — personalized medicine

» Quantitative imaging for personalized medicine
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Outline

» MRI and Quantitative MRI
» Diffusion in the brain and quantitative measures
» Tractography

» Structural connectomics
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Quantitative Magnetic Resonance Imaging

/

induced voltage

\_

precessior\
3 Iy
S
magheticT /
field nuclear spin
3& ”

QAAAAAAAAAA;A

[

/

Courtesy of Marco Barbieri, Ph.D

Postdoctoral Scholar, Department of Radiology, Stanford University

4

o\
Izl

f<

=k )
P </
==

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA




Magnetic Resonance Imaging
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Magnetic Resonance Imaging
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Magnetic Resonance
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Magnetic Resonance
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Magnetic Resonance - polarization

Polarization = macroscopic magnetization

Precession aroun
static field

- -

—_—

Frequency is in MHz
(radio-frequency range)
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Magnetic Resonance - polarization

Polarization = macroscopic magnetization
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Magnetic Resonance - polarization

Polarization = macroscopic magnetization

t=0ms

v

Apply “small” magnetic field oscillating at
the same radiofrequency
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Magnetic Resonance — excitation

Polarization = macroscopic magnetization

t=0.5ms rl]

=

v

Apply “small” magnetic field oscillating at
the same radiofrequency
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Magnetic Resonance — excitation

Polarization = macroscopic magnetization

t=1ms

v

Apply “small” magnetic field oscillating at
the same radiofrequency
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Magnetic Resonance — excitation

Polarization = macroscopic magnetization

t=1.5ms [I-‘ !'I]I

'

Apply “small” magnetic field oscillating at
the same radiofrequency
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Magnetic Resonance — relaxation
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Return to equilibrium
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Magnetic Resonance — relaxation

Return to equilibrium
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t=5ms
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Magnetic Resonance — relaxation
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Relaxation properties depend on multiple factors

Molecular tumbling
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Relaxation properties depend on multiple factors

Molecular tumbling Chemical environment

Water

m Water bound to
collagen proteins
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Relaxation properties depend on multiple factors

Molecular tumbling Chemical environment Physical environment

Water

Free Water (big pore)

N " Water restricted in
Water bound t.o small pore
collagen proteins
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Relaxation properties depend on multiple factors

Molecular tumbling Chemical environment

Water

9

Water bound to
collagen proteins
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Physical environment

Free Water (big pores)

Water restricted in
small pores

Mobility (diffusion)
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Magnetic Resonance Imaging - contrasts

T1 weighted T2 weighted Diffusion weighted
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Magnetic Resonance Imaging - contrasts

@' T1 weighted T2 weighted Diffusion weighted
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The brain-constituent tissues

The brain is full of neurons.

These are organized into two types of
“tissues”:
-gray matter
-white matter

Node of ¢ )
Ranvier V
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o
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gray matter
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Brain contains the nerve fibers of
neurons and conducts electrochemical
signals to other neurons. These fibers
are like highways that connect major
cities together. When the highways are
in better condition, or wider, or more in
number, then many cars travel quickly
between cities. However, if the highways
are in poor condition, or narrower, or
fewer in number, then fewer cars can
travel and will do so at slower speeds.
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Our bodies are filled with
water molecules
moving/diffusing through the
cells and tissues of every
organ—including the brain
and each of its neurons.

Diffusion-weighted  imaging
can capture that movement at
the microscopic level.

In collaboration with Dr. Laura Ludovica Gramegna,
neuroradiologist
Hospital del Mar, Barcelona, Spain
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What is diffusion?

The fick’s first law J=-D dC

dx
J : diffusion flux (mol m2 st
D : diffusion coefficient (diffusivity, m?/s)
C : concentration (mol/m3)

X : position (m)

Molecules have a random
motion due to thermal energy.
They collide causing a net
displacement. Displacement |
described by D. The mean wl

quadratic displacement: L
((r —1ry)?)=6Dt

0 10 20

50 4 B0 60 70 8 € 100
Nz
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Diffusion MRI

Diffusion MRI is a technique that exploits
the diffusion of water molecules in brain
tissues to generate contrast in MR
images.

Signal is given by

S =5y, -exp(—bD)
with b = y2G2%652 (A — g)

D is the diffusion coefficient

The 1° gradient after excitation generates
a phase shift to signals. During the A
period spins that diffuses acquire an
additional phase shift. Thus, the 2°
diffusion gradient (equal to the first one)
can exactly re-align only those spins that
did not diffuse.

{Excitation t—— 1s'rgradient 2nd gradient —-1 Data sampling
- ; .
‘ >~ without motion
| b
| S L 2 e
! \
2 : - with motion
%

Stejskal and Tanner 1965
Pulsed gradient spin-echo sequence

90° 180°

10-100 ms

sAIAY

Dephased Rephased
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Diffusion MRI
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Diffusion MRI

Sy Stationary

Moderate diffusion

mid diffusion

time

Signal (S)

S=Soexp(—bD) S

2 Signal (S)
b =72G*6" (A-94)

It is valid for free diffusion 0 500 1000
b (s/mm?)




How to estimate D?

Known: 1
b-value: diffusion weighting D=—"|n =

Unknown:
So: unweighted signal
D=diffusion coefficient

How many measurements to
estimate D?

We have 2 unknowns so we need
at least 2 measurements

One b-value=0 image (for S;)

And one b>0 image (for D) ,/:; ;;;; A e sTUDIORUM




Mean diffusion (MD) map

T,-weighted Diffusion-weighted

b =0, 300, 1000, 2000 3000(s/mm?)

b (s/mm?)

0 1000 2000 3000
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Free and restricted diffusion

Diffusing molecules follow a “random walk”
Pathway is restricted by tissue boundaries/membranes

Unrestricted

Restricting boundaries
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Isotropic restricted diffusion

Isotropic matter has physical properties that do not depend on the
direction of analyis: isotropic matter has the same characteristics
in all space directions.

Anisotropic restricted diffusion

Anisotropy is the opposite than isotropy. With anisotropy, physical
properties of matter depend on the space direction along with the
analysis is run. Physical properties of anistropic matter depend on
the direction of analysis.
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Diffusion anisotropy

Some microstructures have an intrinsic orientation:

Water can diffuse more freely along white matter fibers (axons)
than across them. Within the axons, diffusion of water
molecules is hindered in the perpendicular direction and aided
in the parallel direction of the axons. Thus, the direction of
greater diffusion is parallel to the axon axis.

_ terminus
restricted
=l free diffusion
body <diffusion
O
axon

\
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Diffusion Tensor Imaging

To measure diffusivity in an anisotropic environment we have to
consider the diffusion coefficient as a tensor and not any more
as a scalar coefficient.

The diffusion tensor (D) is a symmetric matrix 3x3 that fully
describes molecular mobility along each direction and
correlation between these directions. We need to resolve 6
elements of the matrix.

( Dxx ny sz \
b=D, D, D,
D D D

\ X zy 7 )
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Diffusion Tensor Imaging (DTI)

We have to acquire multiple diffusion directions, plus an
unweighted (b=0) image, and fit model of interest in each voxel.

diffusion weighted along b=0 (no diffusion
different directions weighting)

Tensor-based
maps
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Diffusion Tensor Imaging (DTI)

Diagonalization of D allows to determine 3 eigenvectors (V,, V,, V;) and 3
eigenvalues (A, A,, A;) of diffusion tensor D
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Eigenvectors represents the 3 principal diffusion directions and eigenvalues are
the associated diffusivity values (diffusion coefficients) of water molecules

inside the brain.

Eigenvectors are mutually perpendicular and the corresponding eigenvalues are
ordered increasingly: A >A,>A,
Eigenvector (V,) corresponds to the higher eigenvalue (A,) which represents the
maximum diffusion direction of water molecules.
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Quantitative diffusion maps

From the diffusion tensor we can
calculate useful maps of scalars:
Mean diffusivity (MD), mean of
eigenvalues or D trace:

MD=(A,;+A,+1;)/3

Fractional anisotropy (FA), Eigenvalues Variance (normalised):

FA = \/3 3 (4 —< 24 >)2/\/2 3 A, %2 FAIn[0,1]

It Is an index of anisotropy
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Diffusion -weighted MRI - Quantitative diffusion maps

A: Fractional anisotropy map;
B: MD mean diffusivity map;
C: vector-coded map.

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA




Diffusion -weighted MRI - Quantitative diffusion maps

i Lambda 1 map

ld Lambda 2 map

I Lambda 3 map ALMA M/\T\ERSTUDIORUM
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Quantitative diffusion maps

A: FA map; B: color-coded FA; C: vector-coded map.
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Effects on FA and MD quantitative map

Different configurations may have same effect on FA, MD

Swelling Higher density Myelin loss Cell death

FAT FAT FA FA
MD ¢ MD ¢ MD T MD T
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FA and MD quantitative map for clinical purposes

Diffusion weighted imaging (DWI) is a widely
used imaging technique to evaluate patients
with stroke. It can detect brain ischemia
within minutes of stroke onset.

Fifty-five—year-old man with an acute left-
sided hemiparesis 6 hours before the first
MRI examination (patient 10). On the early
PD-w (A) and T2-w (B) images, no
iIschemic lesion was visible. The early DWI
scan (C) shows a right-sided hyperintensity
in the frontal lobe (territory of the
pericallosal artery), which can be
appreciated as a hypointensity on the ADC
trace map (D). The follow-up MRI (E) was
performed 6 days after the onset of
symptoms and confirms the infarct.

Diffusion-Weighted Magnetic Resonance Imaging in Acute Stroke. Gmo&ggr%g;ggll%u&
% stroke. 1998:29:1783-1790 ' '



FA and MD quantitative map for research purposes

ORIGIMAL RESEARCH
ADULT BRAIN

Diffusion Tensor Imaging Mapping of Brain White Matter
Pathology in Mitochondrial Optic Neuropathies

DM. Manners, G. Rizze, C. La Morgia, C. Tonon, C. Testa, P. Barboni, E. Malucelli, ML Valenting, L. Caporali, D. Strobbe,
V. Carelli, and R. Lodi

: . . . =1
Compared with controls, patients with optic atrophy

gene 1-autosomal dominant optic atrophy had an
increased MD in 29.2% of voxels analyzed within
major white matter tracts distributed throughout
the brain, while FA was reduced in 30.3% of voxels.
For patients with Leber hereditary optic
neuropathy, the proportion of altered voxels was
only 0.5% and 5.5%, respectively, of which half was
found within the optic radiation and 3.5%, in the
smaller acoustic radiation. In almost all regions, FA
diminished with age in patients with optic atrophy
gene 1-autosomal dominant optic atrophy and
correlated with average retinal nerve fiber layer 2227
thickness in several areas. ALMA MATER STUDIORUM
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FA and MD quantitative map for research purposes

RESEARCH ARTICLE

Brain Diffusion-Weighted Imaging in Friedreich’s Ataxia

Giovanni Rizzo, MD,"* Caterina Tonon, MD," Maria Lucia Valentino, MD,” David Manners, DPhil," Fiippo Fortuna, MD,"*
Cinzia Gelera, MD,* Antonella Pini, MD,* Alessandro Ghezzo, MD,* Agostino Baruzzi, MD,? Claudia Testa, PhD,"

Moverment Disorders, Vol 26, No. 4, 2011
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Emil Malucelli, PhD," Bruno Barbiroli, MD, Valerio Carelli, MD, PhD,? Raffaske Lodi, MD'*

FRDA patients had
significantly higher MD
values than controls in
medulla, ICP, MCP, SCP,
OR and at the level of
the infratentorial
structures such as
brainstem, cerebellar
hemispheres, and
especially in the
cerebellar vermis. MD
values were strongly
correlated with disease
duration and ICARS:
score.
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ANCOVA

PSP-RS<PD

MSA-C<PD

MSA-C<PSP-RS

PSP-RS<MSA-C

PSP-RS<MSA-P

PSP-RS<HC

MSA-C<HC
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FA and MD quantitative map for research purposes

F ! Contents lists available at ScienceDirect

Parkinsonism and Related Disorders

journal homepage: www.elsevier.com/locate/parkreldis

White matter and cortical changes in atypical parkinsonisms: A
multimodal quantitative MR study

Stefano Zanigni * >, Stefania Evangelisti *" ', Claudia Testa ", David N. Manners * °,
Giovanna Calandra-Buonaura ™ ¢, Maria Guarino °, Anna Gabellini “*,

Laura Ludovica Gramegna *°, Giulia Giannini <, Luisa Sambati ™ <, Pietro Cortelli >,
Raffaele Lodi *® ", Caterina Tonon *°

Vertex-wise CT ANCOVA showed a
significant (p < 0.05, corrected)
difference among groups only in
the left precentral cortex.
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Other models for diffusion MRI

To overcome the tensor model other models have been introduced.

To describe the acquired dMRI signal, the Neurite Orientation Dispersion
and Density Imaging (NODDI) model was introduced.

NODDI is a clinically feasible dMRI model for estimating the
microstuctural complexity of dendrides and axons in vivo.

ALMA MATER STUDIORUM
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NODDI

It is a two-level multi-compartment model in which
total signal is modelled as:

S = (Viso)Siso T (1 = Viso) (VinSin + (1 = vin)Sen )

* S5, is the signal coming from the CSF
compartment with volume fraction v;¢,;

* S.,is the signal from the space between neurites;

* S, is the signal coming from inside the axons and
dendrides, with volume fraction v;,,.

NODDI tissue model
Level 1 Level 2 Mathematical model Image adapted from Tarig, Maira et al. “Bingham-NODDI: Mapping
Non-tissue @ anisotropic orientation dispersion of neurites using diffusion
Total e.g. CSF MRLI.” Neurolmage vol. 133 (2016): 207-223.
CIITUSTON /o i it oo o e e s St
MRI signal Extra-neurite
Tissue < e.g. Cell bodies & O -
glial cells
Grey ffallep A eSS Sshwineeeeih e e e R e e e
bl Intra-neurite X
Axons & dendrites

D, 109
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NODDI

Although it has been applied in many studies no established protocol for preparing
patients before undergoing a dMRI brain scan

here is yet no gold standard for validating diffusion measures.

ISMRM & ISMRT

ANNUAL MEETING & EXHIBITION

04-09 MAY 2024

Assessment of the repeatability and stability of NODDI diffusion modelling using
phantom and in vivo acquisitions.

Mattia Ricchi?3, Aaron Axford3, Jordan McGing3, Ayaka Shinozaki3#, Kylie Yeung3'5\ |
Sarah Birkhozeler3, Rebecca Mills3, Fulvio Zaccagna®’, Mark Symmsé, Andrew Lewis‘% v
.,Oliver Rider3, Damian J. Tyler®4, Claudia Testa*® & James T. Grist>*1°. ALMA MATER STUDIORUM

UNIVERSITA DI BOLOGNA
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PHANTOM & HEALTHY VOLUNTEERS

Circular fibre strand

Fibres of fine polyester fiberfill
of diameter 15 um

Distilled water and NacCl
(83 g NaCl per kilogram of water)
used as fluid T L

Is used to mimic restricted
diffusion in white matter

Region of anisotropic diffusion
Four healthy volunteers

No prior experience with neurological
or psychiatric disorders

Age between 24 and 30 years old
Three males and one female

ALMA MATER STUDIORUM
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ANALYSIS PIPELINE — Brain

Corpus Callosum Internal Capsule

Each participant is scanned twice

* Fit of the corrected data to the
NODDI model

* Alignement of the obtained
guantitative maps to the
MNI152

 Extraction of the results from
specific ROIs in the MNI space

* Bland-Altman analysis to
compute the repeatability
coefficient

ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA
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IN VIVO RESULTS — NODDI

The graph compares the values of ODI and
intra-neurite volume fraction in all the
ROIs considered, between the first and
second scans. The first point on each ROI
represents the value obtained in the first
scan, while the second point represents
the value obtained in the second scan.

Intra-neurite volume fraction

0.0
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IN VIVO RESULTS — NODDI

Repeatability Coefficients for brain study
B-fraction ODI Tissue volume fraction Intra-neurite volume fraction MSE

Genu Corpus Callosum 0 0 0.029 0.020 0.00098

0-0 0-0 0-0.087 0-0.058 0-0.0029

splenium Corpus callosum 0 0.016 0.028 0.0098 0.0016
0-0 0-0.047 0-0.082 0-0.029 0-0.0047
Anterior limb of Internal Capsule 0 0.019 0.033 0.016 0.00098
0-0 0-0.056 0-0.099 0-0.047 0-0.0029
Posterior limb of Internal Capsule 0 0 0.043 0.028 0.00098
0-0 0-0 0-0.13 0-0.082 0-0.0029

Thalaiiis 0.020 0.0098 0 0.033 0.0011

0-0.058 0-0.029 0-0 0-0.099 0-0.0032
Caudate 0.040 0.0098 0.011 0.016 0.00029

0-0.12 0-0.029 0-0.033 0-0.047 0-0.00087
Butaman 0.0098 0.0098 0 0.029 0.00029

0-0.029 0-0.029 0-0 0-0.087 0-0.00087

The consistency of the NODDI results demonstrates the reliability of the model and serves
as a foundation for detecting minor changes in brain microstructure over time, allowing
for the monitoring of the progression of neurological diseases. The next stage in the
research involves a multi-centre study to compare the outcomes of different MR
scanners, which may lead to different results.

ALMA MATER STUDIORUM
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Tractography
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What is Tractography? FMRB

Post-mortem
dissection of some
white matter fibre
bundles (tracts)

Tractography
The post-imaging
reconstruction of fibre bundles/
anatomical connections in the
brain using a set of DW images.
(in-vivo virtual dissection)

ALMA MATER STUDIORUM
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Tractography

Traces the brain pathways using diffusion data.
By fitting a diffusion model we can estimate not only mean diffusion and

fractional anisotropy but also the orientation of maximum diffusion at
each voxel.

Tractography is performed by following these orientation estimates to
reconstruct a pathway that, within a coherent bundle, corresponds to

the underlying fibre pathway.

Previously, such white matter anatomy could only be studied by post-
mortem dissection or invasive tracing in non human animals.

ALMA MATER STUDIORUM
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Tractography-connectivity

Assumption:
direction of
maximum
diffusivity in
voxels with
anisotropic
profile is an
estimate of
the major
fibre
orientation.

Mori et al Ann of Neurology 1999

ALMA MATER STUDIORUM
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Tractography-connectivity

Assumption:

direction of
maximum
diffusivity in
voxels with
anisotropic
profile is an
estimate of
the major
fibre
orientation.
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[Basser et al, Magn Reson Med, 2000]

Uncinate Inferior fronto-occipital

[Catani et al, Neurolmage, 2003]
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Tensor and FA in Crossing Regions

In voxels containing two
crossing bundles, the FA

is artificially low and the ... ‘ 1 ‘1
tensor ellipsoid is e | |\/ T
pancake-shaped (oblate, k4

planar tensor). I 1 I
- FA changes difficult to - ‘ \A\/v| ‘

interpret: Changesin one  »#>*
or both crossing bundles?

ALMA MATER STUDIORUM
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Beyond the tensor model

One major limitation of DTl is its inability to describe fiber directionality in regions
in which two or more fiber populations with different orientations are present
(e.g. crossing fiber regions). This limitation has led to the introduction of new
technigues that attempt to estimate the component fibers either discretely or as
a fiber orientation distribution (FOD) using multi-tensor approaches, spherical
deconvolution or the angular dependence of the diffusion profile

DTl approximates the Probability Density Function (PDF) of the diffusion water
molecules by a three-dimensional multivariate Gaussian distribution (Stejskal
1965)

ALMA MATER STUDIORUM
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White matter tractography with the tensor model approach

The DTI model is oversimplistic, but can capture anisotropic diffusion. Assumption:
direction of maximum diffusivity in voxels with anisotropic profile is an estimate of the
major fibre orientation.

V, map
Principal Diffusion Direction

N
\~,

b) Uses these estimates to propagate curves from a seed (starting voxel/ROI) within‘the:

ALMA MATER STUDIORUM
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How to model crossing fibers?

The DTI model is oversimplistic, but can capture anisotropic diffusion. Assumption:
direction of maximum diffusivity in voxels with anisotropic profile is an estimate of the
major fibre orientation.

64

parallel

fanning\

crossing

X
Kissing »(
€

DTI can not distinguish the various simple configurations of
axon fibers:

DT is less anisotropic if fibers are not straight and parallel
but it is equal for different configurations.

It is introduced the ODF, fiber orientation distribution

function as the fraction of fibers portions within each voxel

with each orientation. (fODF). fODF is a probability

distribution.

To sample fODF diffusion acquisition protocols measure

signal at many gradient directions (30-128) to capture

enough of the directional variation of DW signal potentially - =
to provide the high angular resolution to resolve crossing 7/\
fibers N

DI BOLOGNA




Multi tensor model (parametric)

It is a generalization of DTI which replaces the Gaussian model for p with a mixture

of n Gaussian densities.
In a voxel we consider n distinct populations and that diffusing molecules stay within

only one populations (no exchange):
n

p() = ) aG(x; Dy 1)

=1

€ [0,1] is the volume fraction of the ith fiber population and };; a; = 1 and G is
the Gaussian function with zero mean and covariance 2Dt, t is the diffusion time and
X Is the displacement.
The normalized diffusion-weighted signal is
n

A@) = ) aiexp(~tq"Dig)
=1
Where q is the wavevector and for pulsed-gradient spin-echo g = y8G t = A/— 6/3

q = q/|q| is the direction of the magnetic field gradient.
The b-value is linkedto q: b = t|q|?

65
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Multi tensor model

For spherical acquisition (§ moves as a radius in a sphere) t and |q| are fixed (so b is
fixed):
n
A@ = ) aiexp(—tq Did)
i=1
(tand |g| can also vary).
This model assumes n known and usually n=2 is used.

Unlike the DT model the parameters D, ...D,, in the multi tensor model cannot be
expressed as a linear function of the measurements so the model requires non-linear
optimization.

For n=2 the full tensor has 13 free parameters: the six components of each DT and
one for the volume fraction a, (since a,=1- a,)
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Two-tensor models fitted in each
voxel of an axial slice of a normal
human brain data set. The model is
the full 13-parameters two-tensor
model in every voxel. Ellipsoidal
contours of p from both tensors are
overlaid on a standard FA map. Inset
Images a and b show two- and one-
tensor models, respectively for a
crossing-fiber region. ¢ and d show
two and one-tensor models,
respectively for a region of the
corpus callosum which has a single
fiber population.

HUMANCONNECTOME,ORG
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How to model crossing fibers?

A variety of techniques: multi tensor model and non-parametric techniques such as DSI,
QBALL and spherical deconvolution.

The ball and stick model

FSL: Bedpostx - Probtrackx
Simple model: it assumes that water

Ball & Sticks Model
molecules belong to one or two

y \‘N ‘ populations: a restricted population
easured .
Signal of water molecules in and around

fibers with scatter pattern p, and a

/ / / / / free population that does not interact

— ——t— with fibers and has a scatter pattern
gy == P

= B FSL and bedpost use a Gaussian

A - N model for p;. o

B&S estimates the probability density distributions
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The ball and stick model

FSL: Bedpostx - Probtrackx

Simple model: it assumes that water
Ball & Sticks Model molecules belong to one or two

populations: a restricted population
ianal + @ of water molecules in and around
fibers with scatter pattern p, and a

Sated \4\ >>< frge p(_)pulation that does not interact
Orientations with fibers and has a scatter pattern

1fiber 2 fibers 3 fibers Pr- _
FSL and bedpost use a Gaussian

model for p..
The predicted diffusion signal is:

i = So((1 = f) exp(=b;d) + fexp(—b;dr;"RAR"r;))

Where f is the fraction of anisotropic diffusion and 1-f of the isotropic and r;
1 0 O

IS the gradient direction. R rotates of (0,¢) the matrix A=(0 0 0)

0 0 0 ALMA MATER STUDIORUM
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Spherical deconvolution

SD attempts to measures fODF directly. The key idea is to consider a set of
measurements as the sum of measurements we would get from a fiber
population with each orientation weighted by the fraction of fibers with that
orientation.

It is assumed that all white matter fiber bundles in the brain share identical
diffusion characteristics, thus implicitly assigning any differences in
diffusion anisotropy to partial volume effects.

The diffusion-weighted signal attenuation measured over the surface of a
sphere can then be expressed as the convolution over the sphere of a
response function (the diffusion-weighted attenuation profile for a typical
fiber bundle) with the fiber orientation density function (ODF). The
fiber ODF (the distribution of fiber orientations within the voxel) can
therefore be obtained using spherical deconvolution.

ALMA MATER STUDIORUM
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https://www-sciencedirect-com.ezproxy.unibo.it/topics/neuroscience/rankl
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Spherical deconvolution

The signal S(0,¢) that would be measured from a sample containing several
distinct fiber populations is then given by the sum of the response functions
of each population, weighted by their respective volume fractions, and
rotated such that they are aligned along their respective orientations (¢ Is the
azimuthal angle in spherical coordinates).

50,9) = ) fARO)

where f; is the volume fraction for the ith fiber population, and A. is the
operator representing a rotation onto the direction (6;,¢;). This can be
expressed as the convolution over the unit sphere of the response function
R(0) with a fiber orientation density function (fiber ODF) F(6,4)

S(6,4) = F(6,4) ® R(0)

118,(6.0) ¢ 1>8:(6.¢9) St0.0) R(0) @ F6,0)
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Example: cortico spinal tract.
How to construct the connectivity between the pons and
the motor area

A method to reconstruct white matter pathways using a region of interest (ROI) approach.
The method produced virtual representations of white matter tracts faithful to classical
post-mortem descriptions but it required detailed a priori anatomical knowledge
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Example: cortico spinal tract.
How to construct the connectivity between the pons and
the motor area
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Examples: probabilistic tractography

L
-
%
1
1
1
1
1
- -
1
1
1
1
1
1
1
1

Cortico-spinal tracts.

9 subjects Internal capsule --

Primary motor cortex

Behrens et al, 2007

one fibre two fibres
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Example: arcuate fasciculus.
How to construct the connectivity between the Broca's
area and the Wernicke's area

Arcuate
fasciculus

Broca's
area

Wernicke's
area

ALMA MATER STUDIORUM
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Goitents lists avallable ar selenceDive

. J | Magnetic Resonance Imaging n AI on g tra ct an alySiS
with an automatic procedure

journal homapage: wew. slsaviar.comilocatalm

Original contribution
Along-tract analysis of the arcuate fasciculus using the Laplacian operator to = @
evaluate different tractography methods

Lia Talozzi™”, Claudia Testa™", Stefania Evangelisti”, Lorenzo Cirignotta”, Claudio Bianchini®,
Stefano Rard”, Paola Fantazzini®, Caterina Tonon™™", David Neil Manners”, Raffaele Lodi™

Target ROI: frontal lobe GM

Seed ROI: WM under
the angular gyrus

Target ROI: temporal lobe’s GM

Giorgio et al., Neuroimage 2010
Galantucci et al., Brain 2011

ALMA MATER STUDIORUM
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14

Probtrackx2

12

10

3-dimensional rendering of the mean Laplacian parametrization 2
across al subjects, dividing th AF into 15 segments (blue= 1st
frontal segment, red= 15th temporal segment) projected onto
the MNI
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Along tract analysis

with an automatic procedure: quantitative assessment of spatial
localization of the AF, based on the centroid coordinates
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Tractography: clinical applications

» Presurgical study in patients with neoplastic lesions or in
patients with pharmacoresistant epilepsy

» Evaluation of specific tracts in patients with neurodegenerative
diseases
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Along tract analysis
with an automatic procedure

0s <107
0.8 == R
-~ L
" p,.<0.05

MD (mmrs)

1 93 5§ 7 9 M1 193 9 1 3 § 7 & 1 12 5
Fromtal Tomporal Fromad Temporal
45 20 1o
. 10
_40 » 200
g @ gwo £
, % £ £
‘ﬁ A = 0 -~
~ 0
’ 80
0 ]
t 3 68 7 9 11 13 15 1t 3 57 9 111315 1 3 5 7 9 11 13 5
Frorta Tompoeal Fromal Tergod Fromal Temgond
CSTpon

Quantitative assessement of spatial localization of the AF, based on the
centroid coordinates obtained with the Laplacian parametrization, allowing
comparison of the curvature between hemispheres. For example, in the
frontal segments the AF has a higher lateral curvature (x-coordinate) and a
more ventral localization

X 0(z—coordinate) on the left ALMA MATER STUDIORUM
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Many white matter tracts connectivity

scientific reports

OPEN Assessing robustness
of quantitative susceptibility-based
MRI radiomic features in patients
with multiple sclerosis

Cristisns Fistons >, Leonarde Rundo™*, Alessandm Lugaresi™', David MNeil Manners**,
Kigran &llinson®, Elisa Baldin’, Ganfranco Vormetti ™, Raffasls Lodi™', Caterina Tonon ",
Claudia Tasta™*, Mawro Castalli** & Fuhdo Zacosgne ™54

White matter tracts

AF = arcuate fasciculus, CST = cortico-spinal tract, FAT = frontal aslant tract, IFOF =
inferior fronto-occipital fasciculus, OR = optic radiation, UF = uncinate fasciculus
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Tractography and fMRI

& frontiers | Frontiers in

ORIGINAL RESEARCH

nnnnnn

Neuroplasticity Mechanisms in
Frontal Brain Gliomas: A Preliminary

Study

FIGURE 1 | Three-dimensional rendering of the reconstruction of the AF

frontal glioblastoma grade 4.

(blue), FAT (green), and tumor segmentation {violet) in the same patient with left

The hemispheric laterality index (LI) was
calculated through phonemic

fluency task functional MRI (fMRI) activations
in the frontal, parietal, and temporal lobe
Parcellations.

Arcuate Fasciculus (AF) and Frontal Aslant Tract
(FAT) tractography was performed using
constrained spherical deconvolution diffusivity
modeling and probabilistic fiber tracking.

!3,,!,0,/
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Tractography and fMRI

FIGURE 2 | Axial views of the T2-w FLAIR image superimposed the MRI FIGURE 3 | Axial and coronal views of the T2-w FLAIR image with
phonamic fluency fMRI activation. Example of cne patient with left frontal superimposed the reconstruction of the AF (blue) and FAT (green) of one
ghioblastoma grade 4, showing the recruitment of contralateral compensatory patient with left frontal glioblastoma grade 4, showing the spatial relationship
activation of right frontal operculum (A) and canonical temporal activaticn on between the tumor and tracts and in particular the displacement of both left
the left hemisphere (B). AF and FAT.

TABLE 4 | Cornparison of 0T parametars between patients and healthy confrols.

DTl features HC (N = 24) LG patients (N = 10) LG patients vs. HC RG patients (N = 5) RG patients vs. HC
Mean 5d Mean S5d P-value Mean 5d p-value
Left FAT MO 0.594 0.020 0.637 0072 a.o21* 0.598 0u0cEE NS
FA 0404 0.025 0.3B5 0.053 NS 0.404 0.034 NS
Left AF MO 0.586 0.018 0.607 0.oma a.o21* 0.595 0u0E0 NS
FA 0.450 0.024 D.424 0.ma 0021 0.427 0037 NS
Right FAT MO 0.553 0.2z 0.602 0014 NS 0.668 0.076 0.001*
FA 0.405 0.023 0.389 0.027 NS 0.340 0080 NS
Raght AF MO 0586 0.020 0.589 0.0G NS 0.671 0108 Qoa7e
FA 0.433 0.033 0.415 0.030 NS 0.385 0.075 NS

Furthermore, patients with low grade tumor, showed higher rightward frontal operculum fMRE
activations and better cognitive performance in tests measuring general cognitive abilities,

. . . ALMA MATER STUDIORUM
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Whole brain Connectomics

The study of the organization of the connectome, i.e., a (possibly) complete map of the
whole connections within the brain.

An increasing number of theoretical and empirical studies approach the brain connectivity
from a network perspective by relying on graph theory

Within the domain of human brain mapping, the functional connectivity or functional
networks have been constructed from functional MRI (fMRI) , electroencephalography
(EEG) , and magnetoencephalography (MEG), while the anatomical white matter
connections or structural networks have been constructed from difusion tensor imaging
(DTI) using computational tractography.
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Structural Connectomics

Tractography-Based Connectomics

2) Extracting histological or
imaging features

2) Extracting time series
data from recording sites

Structural
brain network

Functional
brain network

3) Brain conneclivity map — “‘connectome”

4) Graph theoretical analysis

Yeh C-H et al. ) Mag Res Imaging 2021.

Advanced neuroimaging techniques (fMRI and
DWI) have enable identification of the human
connectome, i.e., the comprehensive
description of brain structural or functional
connections.

Much effort toward investigating human brain
connectomics focuses on the application of
graph theoretical analysis, which provides a
range of metrics that characterize the topology
of the network. Such metrics facilitate
explorations of the information integration,
segregation, and propagation in the brain.
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Structural Connectomics

Parcellation

Tractography

Connectivity Matrix

Connectome Construction—focuses on
decisions that need to be made in the
course of connectome construction.

1) the choice of a brain parcellation
scheme to

define brain regions-of-interest (ROIs);
2) the definition of inter-areal
connectivity (Edges);

3) the mechanism to associate
streamlines with brain GM ROls

Graph Theory

A graph is a mathematical @ @‘QQ

structure made by nodes (N)

and edges (E) that connect them. / \@ =
NODES
A/ » a0
S { ol I ik

Brain surface Nodes Edges
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Structural Connectomics

Diffusion MRI data do not provide information about cell bodies or synapses to guide
tractography terminations; nevertheless, there are still some fundamental assumptions
we could make regarding the required characteristics of any estimated streamline
connections generated from the data.

For example: a) fibers should reach at least the interface of GM and WM at both ends;
b) fibers do not terminate either in the middle of WM or in CSF.

c) network nodes are typically obtained from brain parcellation of anatomical MRI data.
d) the connectivity or edge can be defined by the number, length, volume, or probability
of all streamlines between the corresponding nodes.

The diffusion metric for the edges can be obtained from the diffusion tensor model (e.
g., apparent diffusion coefficient, fractional anisotropy, axial and radial diffusivities),or
from other models such as NODDI (e.g., using intracellular volume fraction)
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Thank you for your attention!
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