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➢ Neuroscience at microscopic level

➢ Health theme – personalized medicine

➢ Quantitative imaging for personalized medicine

The context
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➢ MRI and Quantitative MRI

➢ Diffusion in the brain and quantitative measures

➢ Tractography

➢ Structural connectomics

Outline
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Quantitative Magnetic Resonance Imaging

Courtesy of Marco Barbieri, Ph.D
Postdoctoral Scholar, Department of Radiology, Stanford University
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Magnetic Resonance Imaging
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1.5 or 3 T

~ 25 – 65 10−6 T

Magnetic Resonance Imaging
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Magnetic Resonance

Water

Fat

Hydrogen 
nucleus
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Magnetic Resonance
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Magnetic Resonance – relaxation 
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Relaxation properties depend on multiple factors

Molecular tumbling
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Molecular tumbling

Water

Fat

Chemical environment 

Water bound to 
collagen proteins

Relaxation properties depend on multiple factors
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Molecular tumbling

Water

Fat

Chemical environment Physical environment 

Water bound to 
collagen proteins

Free Water (big pore)

Water restricted in 
small pore

Relaxation properties depend on multiple factors
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Molecular tumbling

Water

Fat

Chemical environment Physical environment Mobility (diffusion)

Water bound to 
collagen proteins

Free Water (big pores)

Water restricted in 
small pores

Relaxation properties depend on multiple factors
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T1 weighted T2 weighted Diffusion weighted

Magnetic Resonance Imaging - contrasts
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T1 weighted T2 weighted Diffusion weighted

Magnetic Resonance Imaging - contrasts
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The brain-constituent tissues

The brain is full of neurons.
These are organized into two types of
“tissues”:
-gray matter
-white matter

gray matter

white matter



27

Brain contains the nerve fibers of
neurons and conducts electrochemical
signals to other neurons. These fibers
are like highways that connect major
cities together. When the highways are
in better condition, or wider, or more in
number, then many cars travel quickly
between cities. However, if the highways
are in poor condition, or narrower, or
fewer in number, then fewer cars can
travel and will do so at slower speeds.
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Our bodies are filled with
water molecules
moving/diffusing through the
cells and tissues of every
organ—including the brain
and each of its neurons.

Diffusion-weighted imaging
can capture that movement at
the microscopic level.

In collaboration with Dr. Laura Ludovica Gramegna,
neuroradiologist
Hospital del Mar, Barcelona, Spain
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What is diffusion?

The fick’s first law 

J : diffusion flux (mol m-2 s-1

D : diffusion coefficient (diffusivity, m2/s)
C : concentration (mol/m3)
x : position (m)

time

Molecules have a random 
motion due to thermal energy. 
They collide causing a net 
displacement. Displacement
described by D. The mean
quadratic displacement:
𝑟 − 𝑟0

2 =6Dt

dx

dC
DJ -=



Diffusion MRI

time

Diffusion MRI is a technique that exploits 
the diffusion of water molecules in brain 
tissues to generate contrast in MR 
images. 

Signal is given by 

𝑆 = 𝑆0 ∙ 𝑒𝑥𝑝(−𝑏𝐷)

with 𝑏 = 𝛾2𝐺2𝛿2 ∆ −
𝛿

3

𝐷 is the diffusion coefficient

The 1° gradient after excitation generates 
a phase shift to signals. During the D
period spins that diffuses acquire an 
additional phase shift. Thus, the 2°
diffusion gradient (equal to the first one) 
can exactly re-align only those spins that 
did not diffuse.

Stejskal and Tanner 1965
Pulsed gradient spin-echo sequence
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Gaussian distribution of the mean quadratic displacement:

a) in 1D
b) in 2D
c) In 3D

Diffusion MRI



Diffusion MRI
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How to estimate D?

Known:
b-value: diffusion weighting

Unknown: 
S0: unweighted signal
D=diffusion coefficient

How many measurements to 
estimate D?
We have 2 unknowns so we need
at least 2 measurements
One b-value=0 image (for S0)
And one b>0 image (for D)
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Mean diffusion (MD) map

b = 0,           300,                1000,                 2000          3000(s/mm2)

T2-weighted Diffusion-weighted

0 500 1000

S.I. MD

0         1000           2000          3000
b (s/mm2)
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Diffusing molecules follow a “random walk”
Pathway is restricted by tissue boundaries/membranes

Free and  restricted diffusion
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Isotropic restricted diffusion

Anisotropy is the opposite than isotropy. With anisotropy, physical 
properties of matter depend on the space direction along with the 
analysis is run. Physical properties of anistropic matter depend on 
the direction of analysis.

Isotropic matter has physical properties that do not depend on the 
direction of analyis: isotropic matter has the same characteristics
in all space directions.

Anisotropic restricted diffusion
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Diffusion anisotropy

Some microstructures have an intrinsic orientation:
Water can diffuse more freely along white matter fibers (axons) 
than across them. Within the axons, diffusion of water 
molecules is hindered in the perpendicular direction and aided 
in the parallel direction of the axons. Thus, the direction of 
greater diffusion is parallel to the axon axis.
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Diffusion Tensor Imaging

To measure diffusivity in an anisotropic environment we have to 
consider the diffusion coefficient as a tensor and not any more 
as a scalar coefficient.
The diffusion tensor (D) is a symmetric matrix 3x3 that fully 
describes molecular mobility along each direction and 
correlation between these directions. We need to resolve 6 
elements of the matrix. 
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Diffusion Tensor Imaging (DTI)

We have to acquire multiple diffusion directions, plus an 
unweighted (b=0) image, and fit model of interest in each voxel.

diffusion weighted along

different directions

b=0 (no diffusion

weighting)
Tensor-based

maps
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Diffusion Tensor Imaging (DTI)

Diagonalization of D allows to determine 3 eigenvectors (V1, V2, V3) and 3 

eigenvalues (λ1, λ2, λ3) of diffusion tensor D

Eigenvectors represents the 3 principal diffusion directions and eigenvalues are 

the associated diffusivity values (diffusion coefficients) of water molecules 

inside the brain.

Eigenvectors are mutually perpendicular and the corresponding eigenvalues are 

ordered increasingly: λ1>λ2>λ3

Eigenvector (V1) corresponds to the higher eigenvalue (λ1) which represents the 

maximum diffusion direction of water molecules.
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Quantitative diffusion maps

From the diffusion tensor we can 

calculate useful maps of scalars:

Mean diffusivity (MD), mean of 

eigenvalues or D trace:

MD=(1+2+3)/3

Fractional anisotropy (FA), Eigenvalues Variance (normalised):

𝐹𝐴 = 3σ𝑖=1
3 𝜆𝑖 −≺ 𝜆 > 2/ 2σ𝑖=1

3 𝜆𝑖
2 FA in [0,1]

It is an index of anisotropy
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Diffusion -weighted MRI - Quantitative diffusion maps

A: Fractional anisotropy map;
B: MD mean diffusivity map; 
C: vector-coded map.
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Lambda 1 map

Lambda 2 map

Lambda 3 map

Diffusion -weighted MRI - Quantitative diffusion maps
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Quantitative diffusion maps

A: FA map; B: color-coded FA; C: vector-coded map.
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Effects on FA and MD quantitative map

Different configurations may have same effect on FA, MD

Swelling Myelin lossHigher density Cell death

FA 

MD 

FA 

MD 

FA 

MD 

FA 

MD 
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FA and MD quantitative map for clinical purposes

Diffusion weighted imaging (DWI) is a widely 
used imaging technique to evaluate patients 
with stroke. It can detect brain ischemia 
within minutes of stroke onset.

Fifty-five–year-old man with an acute left-

sided hemiparesis 6 hours before the first 

MRI examination (patient 10). On the early 

PD-w (A) and T2-w (B) images, no 

ischemic lesion was visible. The early DWI 

scan (C) shows a right-sided hyperintensity 

in the frontal lobe (territory of the 

pericallosal artery), which can be 

appreciated as a hypointensity on the ADC 

trace map (D). The follow-up MRI (E) was 

performed 6 days after the onset of 

symptoms and confirms the infarct.

Diffusion-Weighted Magnetic Resonance Imaging in Acute Stroke. 
Stroke. 1998;29:1783-1790
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FA and MD quantitative map for research purposes

Compared with controls, patients with optic atrophy 
gene 1-autosomal dominant optic atrophy had an 
increased MD in 29.2% of voxels analyzed within 
major white matter tracts distributed throughout 
the brain, while FA was reduced in 30.3% of voxels. 
For patients with Leber hereditary optic 
neuropathy, the proportion of altered voxels was 
only 0.5% and 5.5%, respectively, of which half was 
found within the optic radiation and 3.5%, in the 
smaller acoustic radiation. In almost all regions, FA 
diminished with age in patients with optic atrophy 
gene 1-autosomal dominant optic atrophy and 
correlated with average retinal nerve fiber layer 
thickness in several areas. 
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FRDA patients had 
significantly higher MD 
values than controls in 
medulla, ICP, MCP, SCP, 
OR and at the level of 
the infratentorial 
structures such as 
brainstem, cerebellar 
hemispheres, and 
especially in the 
cerebellar vermis. MD 
values were strongly 
correlated with disease
duration and ICARS 
score.

FA and MD quantitative map for research purposes
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FA and MD quantitative map for research purposes

Vertex-wise CT ANCOVA showed a
significant (p < 0.05, corrected)
difference among groups only in
the left precentral cortex.

FA
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Other models for diffusion MRI 

To overcome the tensor model other models have been introduced.

To describe the acquired dMRI signal, the Neurite Orientation Dispersion 
and Density Imaging (NODDI) model was introduced.

NODDI is a clinically feasible dMRI model for estimating the 
microstuctural complexity of dendrides and axons in vivo.
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NODDI 

It is a two-level multi-compartment model in which
total signal is modelled as:

𝑆 = (ν𝑖𝑠𝑜)𝑆𝑖𝑠𝑜 + 1 − ν𝑖𝑠𝑜 (ν𝑖𝑛𝑆𝑖𝑛 + 1 − ν𝑖𝑛 𝑆𝑒𝑛 )

• 𝑆𝑖𝑠𝑜 is the signal coming from the CSF 
compartment with volume fraction ν𝑖𝑠𝑜;

• 𝑆𝑒𝑛 is the signal from the space between neurites;
• 𝑆𝑖𝑛 is the signal coming from inside the axons and 

dendrides, with volume fraction ν𝑖𝑛.

Image adapted from Tariq, Maira et al. “Bingham-NODDI: Mapping 
anisotropic orientation dispersion of neurites using diffusion
MRI.” NeuroImage vol. 133 (2016): 207-223. 
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NODDI 

Although it has been applied in many studies  no established protocol for preparing 
patients before undergoing a dMRI brain scan

here is yet no gold standard for validating diffusion measures.

Assessment of the repeatability and stability of NODDI diffusion modelling using 
phantom and in vivo acquisitions.

Mattia Ricchi1,2,3, Aaron Axford3, Jordan McGing3, Ayaka Shinozaki3,4, Kylie Yeung3,5, 
Sarah Birkhozeler3, Rebecca Mills3, Fulvio Zaccagna6,7, Mark Symms8, Andrew Lewis3, 
Oliver Rider3, Damian J. Tyler3,4, Claudia Testa2,9 & James T. Grist3,4,10.
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PHANTOM & HEALTHY VOLUNTEERS

Circular fibre strand

Fibres of fine polyester fiberfill
of diameter 15 μm

Distilled water and NaCl
(83 g NaCl per kilogram of water) 
used as fluid

Is used to mimic restricted 
diffusion in white matter

Four healthy volunteers 

No prior experience with neurological 
or psychiatric disorders

Age between 24 and 30 years old

Three males and one female
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ANALYSIS PIPELINE – Brain 

Each participant is scanned twice

• Fit of the corrected data to the 
NODDI model

• Alignement of the obtained
quantitative maps to the 
MNI152

• Extraction of the results from 
specific ROIs in the MNI space

• Bland-Altman analysis to 
compute the repeatability
coefficient

Caudate Thalamus Putamen

Corpus Callosum Internal Capsule
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IN VIVO RESULTS – NODDI

The graph compares the values of ODI and
intra-neurite volume fraction in all the
ROIs considered, between the first and
second scans. The first point on each ROI
represents the value obtained in the first
scan, while the second point represents
the value obtained in the second scan.
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IN VIVO RESULTS – NODDI

The consistency of the NODDI results demonstrates the reliability of the model and serves 
as a foundation for detecting minor changes in brain microstructure over time, allowing 
for the monitoring of the progression of neurological diseases. The next stage in the 
research involves a multi-centre study to compare the outcomes of different MRI 
scanners, which may lead to different results. 
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Tractography



58

Tractography

Traces the brain pathways using diffusion data. 
By fitting a diffusion model we can estimate not only mean diffusion and 
fractional anisotropy but also the orientation of maximum diffusion at 
each voxel. 

Tractography is performed by following these orientation estimates to 
reconstruct a pathway that, within a coherent bundle, corresponds to 
the underlying fibre pathway. 
Previously,  such white matter anatomy could only be studied by post-
mortem dissection or invasive tracing in non human animals. 
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Tractography-connectivity

Mori et al Ann of Neurology 1999

Assumption: 
direction of 
maximum 
diffusivity in 
voxels with 
anisotropic
profile is an 
estimate of 
the major 
fibre
orientation.



60

Tractography-connectivity

Assumption: 
direction of 
maximum 
diffusivity in 
voxels with 
anisotropic
profile is an 
estimate of 
the major 
fibre
orientation.
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Tensor and FA in Crossing Regions

In voxels containing two 
crossing bundles, the FA 
is artificially low and the 
tensor ellipsoid is 
pancake-shaped (oblate, 
planar tensor).

- FA changes difficult to 
interpret: Changes in one 
or both crossing bundles?
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Beyond the tensor model

One major limitation of DTI is its inability to describe fiber directionality in regions 
in which two or more fiber populations with different orientations are present 
(e.g. crossing fiber regions). This limitation has led to the introduction of new 
techniques that attempt to estimate the component fibers either discretely or as 
a fiber orientation distribution (FOD) using multi-tensor approaches, spherical 
deconvolution or the angular dependence of the diffusion profile

DTI approximates the Probability Density Function (PDF) of the diffusion water 
molecules by a three-dimensional multivariate Gaussian distribution (Stejskal 
1965)
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White matter tractography with the tensor model approach

The DTI model is oversimplistic, but can capture anisotropic diffusion. Assumption: 
direction of maximum diffusivity in voxels with anisotropic profile is an estimate of the 
major fibre orientation.

V1 map
Principal Diffusion Direction

It is defined as deterministic and parametric tractography 

a) Uses DWI data and a the DTI model to obtain fiber orientation estimates in each voxel.
b) Uses these estimates to propagate curves from a seed (starting voxel/ROI) within the brain 

volume
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How to model crossing fibers?

The DTI model is oversimplistic, but can capture anisotropic diffusion. Assumption: 
direction of maximum diffusivity in voxels with anisotropic profile is an estimate of the 
major fibre orientation.

DTI can not distinguish the various simple configurations of 
axon fibers:
DT is less anisotropic if fibers are not straight and parallel 
but it is equal for different configurations.

It is introduced the ODF, fiber orientation distribution 

function as the fraction of fibers portions within each voxel 
with each orientation. (fODF). fODF is a probability 
distribution.
To sample fODF diffusion acquisition protocols measure 
signal at many gradient directions (30-128) to capture 
enough of the directional variation of DW signal potentially 
to provide the high angular resolution to resolve crossing 
fibers
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Multi tensor model (parametric)

It is a generalization of DTI which replaces the Gaussian model for p with a mixture 

of n Gaussian densities. 

In a voxel we consider n distinct populations and that diffusing molecules stay within 

only one populations (no exchange):

𝑝 𝑥 =

𝑖=1

𝑛

𝑎𝑖𝐺(𝒙; 𝑫𝒊, 𝑡)

𝑎𝑖 ∈ [0,1] is the volume fraction of the ith fiber population and σ𝑖 𝑎𝑖 = 1 and G is 

the Gaussian function with zero mean and covariance 2Dt, t is the diffusion time and 

x is the displacement.

The normalized diffusion-weighted signal is 

𝐴 𝒒 =

𝑖=1

𝑛

𝑎𝑖 exp(−𝑡𝒒
𝑇𝐷𝑖𝒒)

Where q is the wavevector and for pulsed-gradient spin-echo 𝒒 = 𝛾𝛿𝐺 𝑡 = ∆ − 𝛿/3
ෝ𝒒 = 𝒒/ 𝒒 is the direction of the magnetic field gradient.

The b-value is linked to q:   𝑏 = 𝑡 𝒒 2
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Multi tensor model

For spherical acquisition (ො𝑞 moves as a radius in a sphere) t and 𝒒 are fixed (so b is 

fixed):

𝐴 ෝ𝒒 =

𝑖=1

𝑛

𝑎𝑖 exp −𝑡ෝ𝒒 𝐷𝑖ෝ𝒒

(t and 𝒒 can also vary).

This model assumes n known and usually n=2 is used.

Unlike the DT model the parameters D1, …Dn in the multi tensor model cannot be 

expressed as a linear function of the measurements so the model requires non-linear 

optimization.

For n=2 the full tensor has 13 free parameters: the six components of each DT and 

one for the volume fraction a1 (since a2=1- a1)
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Two-tensor models fitted in each 

voxel of an axial slice of a normal 

human brain data set. The model is 

the full 13-parameters two-tensor 

model in every voxel. Ellipsoidal 

contours of p from both tensors are 

overlaid on a standard FA map. Inset 

images a and b show two- and one-

tensor models, respectively for a 

crossing-fiber region. c and d show 

two and one-tensor models, 

respectively for a region of the 

corpus callosum which has a single 

fiber population.  
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How to model crossing fibers?

A variety of techniques: multi tensor model and non-parametric techniques such as DSI, 

QBALL and spherical deconvolution.

The ball and stick model 

1 fiber 2 fibers 3 fibers

FSL: Bedpostx - Probtrackx

B&S estimates the probability density distributions

Simple model: it assumes that water

molecules belong to one or two

populations: a restricted population

of water molecules in and around

fibers with scatter pattern pr and a

free population that does not interact

with fibers and has a scatter pattern

pf.

FSL and bedpost use a Gaussian

model for pf.
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FSL: Bedpostx - Probtrackx
Simple model: it assumes that water

molecules belong to one or two

populations: a restricted population

of water molecules in and around

fibers with scatter pattern pr and a

free population that does not interact

with fibers and has a scatter pattern

pf.

FSL and bedpost use a Gaussian

model for pf.

1 fiber 2 fibers 3 fibers

The ball and stick model

The predicted diffusion signal is:

Where f is the fraction of anisotropic diffusion and 1-f of the isotropic and 𝒓𝑖

is the gradient direction. R rotates of (,) the matrix A=(

1 0 0
0 0 0)
0 0 0

𝜇𝑖 = 𝑆0( 1 − 𝑓 exp −𝑏𝑖𝑑 + 𝑓𝑒𝑥𝑝(−𝑏𝑖𝑑𝒓𝑖
𝑇𝑹𝐀𝑹𝑻𝒓𝑖))
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SD attempts to measures fODF directly. The key idea is to consider a set of

measurements as the sum of measurements we would get from a fiber

population with each orientation weighted by the fraction of fibers with that

orientation.

It is assumed that all white matter fiber bundles in the brain share identical

diffusion characteristics, thus implicitly assigning any differences in

diffusion anisotropy to partial volume effects.

The diffusion-weighted signal attenuation measured over the surface of a

sphere can then be expressed as the convolution over the sphere of a

response function (the diffusion-weighted attenuation profile for a typical

fiber bundle) with the fiber orientation density function (ODF). The

fiber ODF (the distribution of fiber orientations within the voxel) can

therefore be obtained using spherical deconvolution.

Spherical deconvolution

https://www-sciencedirect-com.ezproxy.unibo.it/topics/neuroscience/anisotropy
https://www-sciencedirect-com.ezproxy.unibo.it/topics/neuroscience/rankl
https://www-sciencedirect-com.ezproxy.unibo.it/topics/neuroscience/deconvolution
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The signal S(,) that would be measured from a sample containing several

distinct fiber populations is then given by the sum of the response functions

of each population, weighted by their respective volume fractions, and

rotated such that they are aligned along their respective orientations (ϕ is the

azimuthal angle in spherical coordinates).

𝑆 𝜃, 𝜑 =𝑓𝑖 𝐴𝑖𝑅(𝜃)

where 𝑓𝑖 is the volume fraction for the ith fiber population, and Âi is the

operator representing a rotation onto the direction (θi,ϕi). This can be

expressed as the convolution over the unit sphere of the response function

R(θ) with a fiber orientation density function (fiber ODF) F(θ,ϕ)

Spherical deconvolution
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Example: cortico spinal tract.
How to construct the connectivity between the pons and 

the motor area
A method to reconstruct white matter pathways using a region of interest (ROI) approach. 
The method produced virtual representations of white matter tracts faithful to classical 
post-mortem descriptions but it required detailed a priori anatomical knowledge
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Example: cortico spinal tract.
How to construct the connectivity between the pons and 

the motor area
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Examples: probabilistic tractography
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Example: arcuate fasciculus.
How to construct the connectivity between the Broca's

area and the Wernicke's area
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Giorgio et al., Neuroimage 2010

Galantucci et al., Brain 2011

Along tract analysis
with an automatic procedure
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3-dimensional rendering of the mean Laplacian parametrization 
across al subjects, dividing th AF into 15 segments (blue= 1st 
frontal segment, red= 15th temporal segment) projected onto 
the MNI
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Along tract analysis
with an automatic procedure: quantitative assessment of spatial 
localization of the AF, based on the centroid coordinates

T1

FA + arcuate
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Tractography: clinical applications

➢Presurgical study in patients with neoplastic lesions or in 

patients with pharmacoresistant epilepsy

➢Evaluation of specific tracts in patients with neurodegenerative 

diseases



80

Quantitative assessement of spatial localization of the AF, based on the 
centroid coordinates obtained with the Laplacian parametrization, allowing
comparison of the curvature between hemispheres. For example,  in the 
frontal segments the AF has a higher lateral curvature (x-coordinate) and a 
more ventral localization
(z-coordinate) on the left

Along tract analysis
with an automatic procedure
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Many white matter tracts connectivity

White matter tracts

AF CST FAT

IFOF OR UF

AF = arcuate fasciculus, CST = cortico-spinal tract, FAT = frontal aslant tract, IFOF = 
inferior fronto-occipital fasciculus, OR = optic radiation, UF = uncinate fasciculus
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Tractography and fMRI

The hemispheric laterality index (LI) was
calculated through phonemic
fluency task functional MRI (fMRI) activations
in the frontal, parietal, and temporal lobe
Parcellations.
Arcuate Fasciculus (AF) and Frontal Aslant Tract
(FAT) tractography was performed using 
constrained spherical deconvolution diffusivity
modeling and probabilistic fiber tracking.
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Tractography and fMRI

Furthermore, patients with low grade tumor, showed higher rightward frontal operculum fMRI
activations and better cognitive performance in tests measuring general cognitive abilities, 
semantic fluency, verbal short-term memory, and executive functions.
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Whole brain Connectomics

The study of the organization of the connectome, i.e., a (possibly) complete map of the 
whole connections within the brain.

An increasing number of theoretical and empirical studies approach the brain connectivity 
from a network perspective by relying on graph theory

Within the domain of human brain mapping, the functional connectivity or functional
networks have been constructed from functional MRI (fMRI) , electroencephalography
(EEG) , and magnetoencephalography (MEG), while the anatomical white matter
connections or structural networks have been constructed from difusion tensor imaging 
(DTI) using computational tractography.
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Structural Connectomics

Advanced neuroimaging techniques (fMRI and 
DWI) have enable identification of the human 
connectome, i.e., the comprehensive 
description of brain structural or functional 
connections.

Much effort toward investigating human brain 
connectomics focuses on the application of 
graph theoretical analysis, which provides a 
range of metrics that characterize the topology 
of the network. Such metrics facilitate 
explorations of the information integration, 
segregation, and propagation in the brain.

Yeh C-H et al. J Mag Res Imaging 2021. 
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Structural Connectomics
Connectome Construction—focuses on 
decisions that need to be made in the 
course of connectome construction. 
1) the choice of a brain parcellation 
scheme to
define brain regions-of-interest (ROIs);
2) the definition of inter-areal 
connectivity (Edges); 
3) the mechanism to associate 
streamlines with brain GM ROIs
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Structural Connectomics

Diffusion MRI data do not provide information about cell bodies or synapses to guide 
tractography terminations; nevertheless, there are still some fundamental assumptions 
we could make regarding the required characteristics of any estimated streamline 
connections generated from the data. 
For example: a) fibers should reach at least the interface of GM and WM at both ends;
b) fibers do not terminate either in the middle of WM or in CSF.
c) network nodes are typically obtained from brain parcellation of anatomical MRI data. 
d) the connectivity or edge can be defined by the number, length, volume, or probability 
of all streamlines between the corresponding nodes.

The diffusion metric for the edges can be obtained from the diffusion tensor model (e. 
g., apparent diffusion coefficient, fractional anisotropy, axial and radial diffusivities),or 
from other models such as NODDI (e.g., using intracellular volume fraction)
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Thank you for your attention!



89

Nuclear Magnetic Resonance Laboratory
Dipartimento di Fisica e Astronomia , Università di Bologna

Claudia Testa, Associate Professor

Leonardo Brizi, Senior Tenure-track Assistant Professor

Carlo Golini, PhD student

Mattia Ricchi, PhD student

Camilla Marella, Research Fellow

Aknowledgments
Claudio Bianchini, Scientific Collaborator - UNIBO

David Neil Manners, Associate Professor-UNIBO

Laura Ludovica Gramegna, Neuroradiologist- PSMAR, Barcelona

Marco Barbieri, Postdoctoral Scholar, University of Stanford

James Grist, Assistant Professor, Universiy of Oxford


